

 Exploratory Data Analysis (EDA)
Data Science and Machine Learning PART 1

 Learning Objectives

By the end of this lecture, you’ll understand:

1. What EDA is and why it’s essential before building models.

2. The main steps in performing EDA.

3. How to summarize, visualize, and interpret data using Python.

4. How to identify patterns, trends, and relationships in data.

5. How to make data-driven decisions from your findings.

 1. What Is Exploratory Data Analysis?

 Simple Definition:

Exploratory Data Analysis (EDA) is the process of examining your data before doing anything else —
before modeling, before predictions, before drawing conclusions.

It helps you understand:

• What the data looks like

• What’s missing

• What’s unusual (outliers)

• What patterns or relationships exist

 Analogy:

Think of EDA as being a detective investigating a mystery.
Your dataset is the crime scene.
Before jumping to conclusions, you first:

• Look for clues (patterns)

• Identify inconsistencies (missing data, errors)

• Observe connections between variables

Only then can you solve the mystery, or in our case, build a good machine learning model.

 2. Why EDA Is Important

Let’s say you’re working on a project to predict student exam scores based on their study hours, sleep,
and attendance.

Before trusting the data, you need to check:

• Are there missing or wrong entries (e.g., “sleep = -5 hours”)?

• Are there relationships (do more study hours = higher scores)?

• Are there any patterns worth noting?

If you skip this step, your model might “learn” from bad data, leading to poor or misleading predictions.

In short:

EDA helps you clean, understand, and visualize your data, it’s the foundation of every good data project.

 3. Steps in EDA

Here are the main steps we’ll explore:

1. Understanding your dataset

2. Summarizing data (numerical and categorical)

3. Handling missing or wrong values

4. Finding patterns and correlations

5. Visualizing your findings

 4. Step 1: Understanding Your Dataset

Let’s start with a sample dataset, for example, a Student Performance Dataset.

Name Study Hours Sleep Hours Attendance (%) Score

Alice 5 8 90 85

Bob 3 6 70 60

Charlie 8 7 95 92

Diana 2 5 65 50

Eve 4 7 80 75

 Import the Libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

data = pd.read_csv("students.csv") # Example CSV file

 Peek at the Data

print(data.head())

Shows the first 5 rows, like looking at the first page of a spreadsheet.

 Check Dimensions and Structure

print(data.shape) # (rows, columns)

print(data.info()) # Data types and missing values

Output:

(100, 5)

<class 'pandas.core.frame.DataFrame'>

Columns: 5 entries

 Analogy:
Think of this step like checking your pantry before cooking, you’re figuring out how many ingredients
(columns) you have and if any are missing.

 5. Step 2: Descriptive Statistics

Let’s explore the basic statistics that summarize your data.

print(data.describe())

Output:

 Study Hours Sleep Hours Attendance Score

count 100 100 100 100

mean 5.2 7.0 85.4 78.5

std 2.1 1.2 10.5 12.4

min 1.0 4.5 60.0 45.0

max 9.0 9.0 100.0 98.0

 What Does This Tell Us?

• Mean (average): Students study about 5.2 hours and sleep 7 hours on average.

• Standard deviation: There’s some variation, not everyone studies or sleeps the same amount.

• Minimum/Maximum: One student studied only 1 hour (ouch!) and another 9 hours.

This gives you a quick overview of your data’s range and spread.

 For Categorical Data:

If you had columns like Gender or Grade, you’d use:

print(data['Gender'].value_counts())

Output:

Male: 60

Female: 40

 Analogy:
Descriptive statistics are like a quick health check for your data, you’re taking its pulse before doing
deeper analysis.

 6. Step 3: Handling Missing and Incorrect Data

Even in EDA, you’ll encounter incomplete or suspicious values.

print(data.isnull().sum())

If you see:

Study Hours 2

Sleep Hours 1

Score 0

You know where the problems are.

You can fix them:

data['Study Hours'].fillna(data['Study Hours'].mean(), inplace=True)

Or remove them:

data.dropna(inplace=True)

 Check for Outliers

Outliers are extreme values that don’t fit the pattern (e.g., someone studied 30 hours a day, impossible!).

We can spot them visually:

sns.boxplot(data['Study Hours'])

plt.show()

 Analogy:
If everyone brings normal-sized apples to a fruit market and one person brings a watermelon, that’s your
outlier.

 7. Step 4: Finding Patterns and Relationships

EDA is all about asking smart questions and using the data to find answers.

 Example Questions

• Do more study hours lead to higher scores?

• Does attendance affect performance?

• Is there an optimal amount of sleep?

Let’s find out on our next lecture.

