

Exploratory Data Analysis (EDA)

Data Science and Machine Learning PART 2

◆ Correlation Analysis

Correlation tells us how strongly two variables are related.

```
print(data.corr())
sns.heatmap(data.corr(), annot=True, cmap="coolwarm")
plt.show()
```

Output:

Variable	Study Hours	Sleep Hours	Attendance	Score
Study Hours	1.00	-0.20	0.60	0.85
Sleep Hours	-0.20	1.00	0.10	0.15
Attendance	0.60	0.10	1.00	0.70
Score	0.85	0.15	0.70	1.00

🧠 Interpretation:

- **Study Hours and Score (0.85):** Strong positive relationship, more studying = better scores.
- **Sleep Hours and Score (0.15):** Weak correlation, sleep doesn't strongly affect grades here.
- **Attendance and Score (0.70):** Moderate positive relationship.

Scatter Plots

Visualize relationships easily:

```
sns.scatterplot(x='Study Hours', y='Score', data=data)  
plt.title("Study Hours vs Score")  
plt.show()
```

You'll likely see a clear upward trend, as study hours increase, scores go up.

Histograms

To check data distribution:

```
sns.histplot(data['Score'], bins=10, kde=True)  
plt.show()
```

Analogy:

A histogram is like looking at **a grade distribution in a classroom**, are most students doing well, or are many failing?

Box Plots

Box plots help you see **spread** and **outliers**: `sns.boxplot(x='Score', data=data)`

They show:

- **Median** (middle value)
- **Interquartile range** (spread)
- **Outliers** (dots outside the whiskers)

Pair Plots

A great way to visualize all relationships at once:

```
sns.pairplot(data)  
plt.show()
```

It shows how each variable relates to every other, like a **bird's-eye view** of your dataset.

8. Step 5: Drawing Insights and Conclusions

After cleaning, summarizing, and visualizing, it's time to interpret your findings.

Example Insights from Our Student Dataset:

- Students who study more tend to score higher.
- Attendance also correlates positively with grades.
- Sleep doesn't have a big impact (at least in this dataset).
- There are no extreme outliers after cleaning.

These insights help guide the **next step**, such as building a **predictive model** for student performance.

9. Summary of EDA Steps

Step	Description	Example Tool/Method
1. Load and Inspect Data	Understand structure and size	<code>data.info()</code> , <code>data.head()</code>
2. Descriptive Statistics	Summarize key figures	<code>data.describe()</code>
3. Handle Missing Values	Fill or remove	<code>.fillna()</code> , <code>.dropna()</code>
4. Detect Outliers	Identify unusual points	<code>sns.boxplot()</code>
5. Explore Correlations	Find variable relationships	<code>data.corr()</code> , <code>sns.heatmap()</code>
6. Visualize Patterns	Make relationships visible	<code>sns.scatterplot()</code> , <code>sns.pairplot()</code>
7. Draw Conclusions	Turn findings into insights	Interpret visuals

10. Final Analogy: EDA as a Medical Checkup

Imagine your dataset as a **patient** visiting the doctor.

- You first **collect information** (step 1).
- Then you **measure vital signs** (statistics).
- Next, you **look for problems** (missing data, outliers).
- Finally, you **analyze patterns** (relationships between variables).

EDA is the **health checkup** of your data, it ensures everything is in good shape before moving to “treatment” (modeling).

Bonus Tip: EDA Tools to Explore

- **pandas profiling** → pip install pandas-profiling
Automatically generates a detailed EDA report.

```
from pandas_profiling import ProfileReport  
  
report = ProfileReport(data)  
  
report.to_notebook_iframe()
```

Conclusion

EDA is the **bridge between raw data and intelligent decisions**.

It's where curiosity meets logic, where you explore, question, visualize, and finally **understand** your data.

When done right, it tells you:

- What's reliable
- What's noise
- And what's worth exploring further

Always remember:

“Data tells stories, but only if you take the time to listen.”